Superconductivity close to the Mott state: From condensed-matter systems to superfluidity in optical lattices
نویسنده
چکیده
Since the discovery of high-temperature superconductivity in 1986 by Bednorz and Müller, great efforts have been devoted to finding out how and why it works. From the d-wave symmetry of the order parameter, the importance of antiferromagnetic fluctuations, and the presence of a mysterious pseudogap phase close to the Mott state, one can conclude that high-Tc superconductors are clearly distinguishable from the well-understood BCS superconductors. The d-wave superconducting state can be understood through a Gutzwiller-type projected BCS wave-function. In this review article, we revisit the Hubbard model at half-filling and focus on the emergence of exotic superconductivity with d-wave symmetry in the vicinity of the Mott state, starting from ladder systems and then studying the dimensional crossovers to higher dimensions. This allows to confirm that short-range antiferromagnetic fluctuations can mediate superconductivity with d-wave symmetry. Ladders are also nice prototype systems allowing to demonstrate the truncation of the Fermi surface and the emergence of a Resonating Valence Bond (RVB) state with preformed pairs in the vicinity of the Mott state. In two dimensions, a similar scenario emerges from renormalization group arguments. We also discuss theoretical predictions for the d-wave superconducting phase as well as the pseudogap phase, and address the crossover to the overdoped regime. Finally, cold atomic systems with tunable parameters also provide a complementary insight into this outstanding problem.
منابع مشابه
Orbital physics in optical lattices: From strong correlations to twisted superfluidity
Orbital physics plays a significant role for a vast number of important phenomena in complex condensed matter systems such as high-Tc superconductivity and unconventional magnetism. The interaction in strongly correlated bosonic systems promotes particle to higher orbital states, which has been mostly neglected in favor for single-band Hamiltonians. In this regard, optical lattices offer an ide...
متن کاملابررسانایی در کوپراتهای بهینه آلاییده: برنامه BZA به خوبی کار میکند و ابر تعادل چسب است
Resonating valence bond states in a doped Mott insulator was proposed to explain superconductivity in cuprates in January 1987 by Anderson. A challenging task then was proving existence of this unconventional mechanism and a wealth of possibilities, with a rigor acceptable in standard condensed matter physics, in a microscopic theory and develop suitable many body techniques. Shortly, a paper...
متن کاملMomentum-Resolved Bragg Spectroscopy in Optical Lattices
Strongly correlated many-body systems show various exciting phenomena in condensed matter physics such as high-temperature superconductivity and colossal magnetoresistance. Recently, strongly correlated phases could also be studied in ultracold quantum gases possessing analogies to solid-state physics, but moreover exhibiting new systems such as Fermi-Bose mixtures and magnetic quantum phases w...
متن کاملObservation of vortex lattices in Bose-Einstein condensates.
Quantized vortices play a key role in superfluidity and superconductivity. We have observed the formation of highly ordered vortex lattices in a rotating Bose-condensed gas. These triangular lattices contained over 100 vortices with lifetimes of several seconds. Individual vortices persisted up to 40 seconds. The lattices could be generated over a wide range of rotation frequencies and trap geo...
متن کاملوابستگی نظم پیچشی به درجه همسانگردی در هامیلتونی هابارد شبکههای مثلثی
Investigation of broken symmetry phases with long range order in strongly correlated electron systems is among subjects that have always been of interest to condensed matter scientists. In this paper we tried to study the existence of the 120 degrees magnetic spiral order, based on anisotropy in geometrically frustrated triangular lattices, using variational cluster approximation. We observed t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008